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What is Imagination?

* The ability to simulate ideas in our head

* We simulate these notions approximately based on our prior
knowledge

* Imagination is useful in planning

« Soin RL, the focus is to make agents plan better by “imagining”
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Why would Imagination help?
« Two main types of RL - Model free, Model based

* Model free agents are difficult to train
« Difficult to form perfect models of the world in model based
« Imagination will help in forming imperfect models of the world

« Key idea: Combine model free agents with imagination
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Model Architecture: Imagination Core

a) Imagination core
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Model Architecture: Environment Model

a) Imagination core
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Model Architecture: Rollout Encoder

b) Single imagination rollout

« The imagined trajectories are
imperfect

 So, we want to discard information \

« lIdea - Only use imagined
information (or part of it) if useful
else discard

* Aggregate the encoded values
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Model Architecture: Policy Module

« Take the aggregated
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Model Architecture: Full View

a) Imagination core
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b) Single imagination rollout
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c) Full I12A Architecture
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Training strategies

« The policy in environment model tries to imitate the model free
policy
« Environment model was pre trained using a partially trained

model free agent

N\  Northwestern |ENGINEERING 9



Results
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http://www.youtube.com/watch?v=llwAwE7ItdM

Results: Generalization
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https://docs.google.com/file/d/1Oc7Khx9AMk6-CsouHo9CE_3qtJlMSTqK/preview

Results: Comparison
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What is Curiosity?

« Desire to learn something, seek new experiences

* Learn about things which we don’'t know much about

* In RL, this is useful for exploration

« S0, make an agent explore the environment better by making it

“curious”
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Why would curiosity help?

* In RL, extrinsic rewards are usually sparse

« So, positive reinforcement happens only when we somehow
encounter these rewards - difficult task

« Humans still explore the environment using motivation/curiosity

« Similarly, curiosity as an intrinsic reward would help the agent
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Curiosity: Formal definition

« Curiosity is the error in predicting the consequence of its own
actions
« Agent predicts the next state based on present state and action

P(O(Teg1)|2e, ar)

» The intrinsic reward is then: r, = — log p(&(2¢41) |2, ar)

* Lower the probability higher the reward. So the agent gets
rewards if it predicts hard to predict states
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Curiosity: Inverse Dynamics Model
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Results

no external reward, only curiosity

LRL
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http://www.youtube.com/watch?v=l1FqtAHfJLI

Results

—— Batch of 128 environments —— Pure curiosity (no-reward, infinite-horizon) exploration —— Pure curiosity (no-reward, infinite-horizon) exploration
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